

# VSAM RLS Best Practices

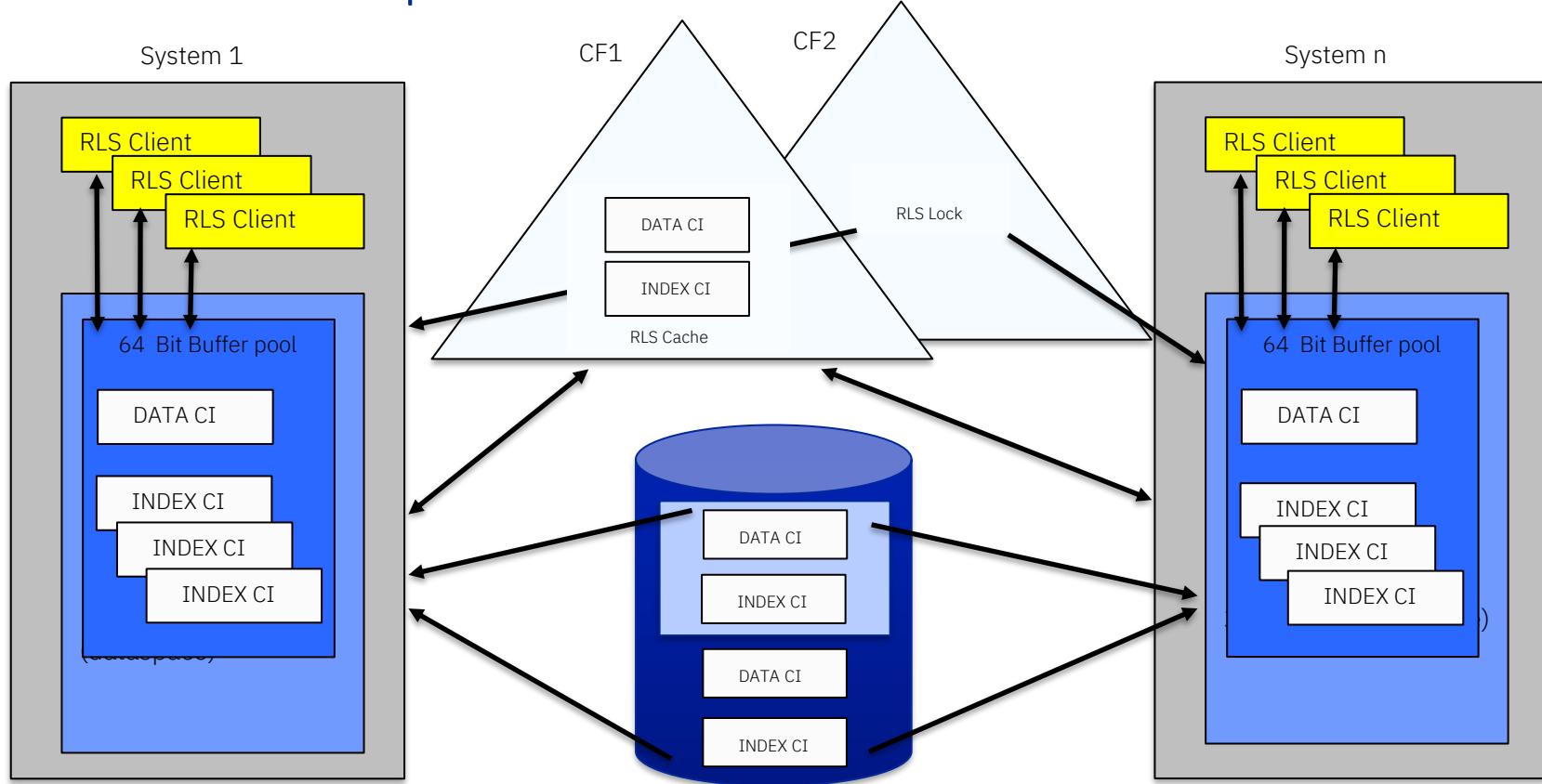


Terri Menendez  
STSM  
IBM zSystems  
[terriam@us.ibm.com](mailto:terriam@us.ibm.com)  
Oct. 2023



# Agenda

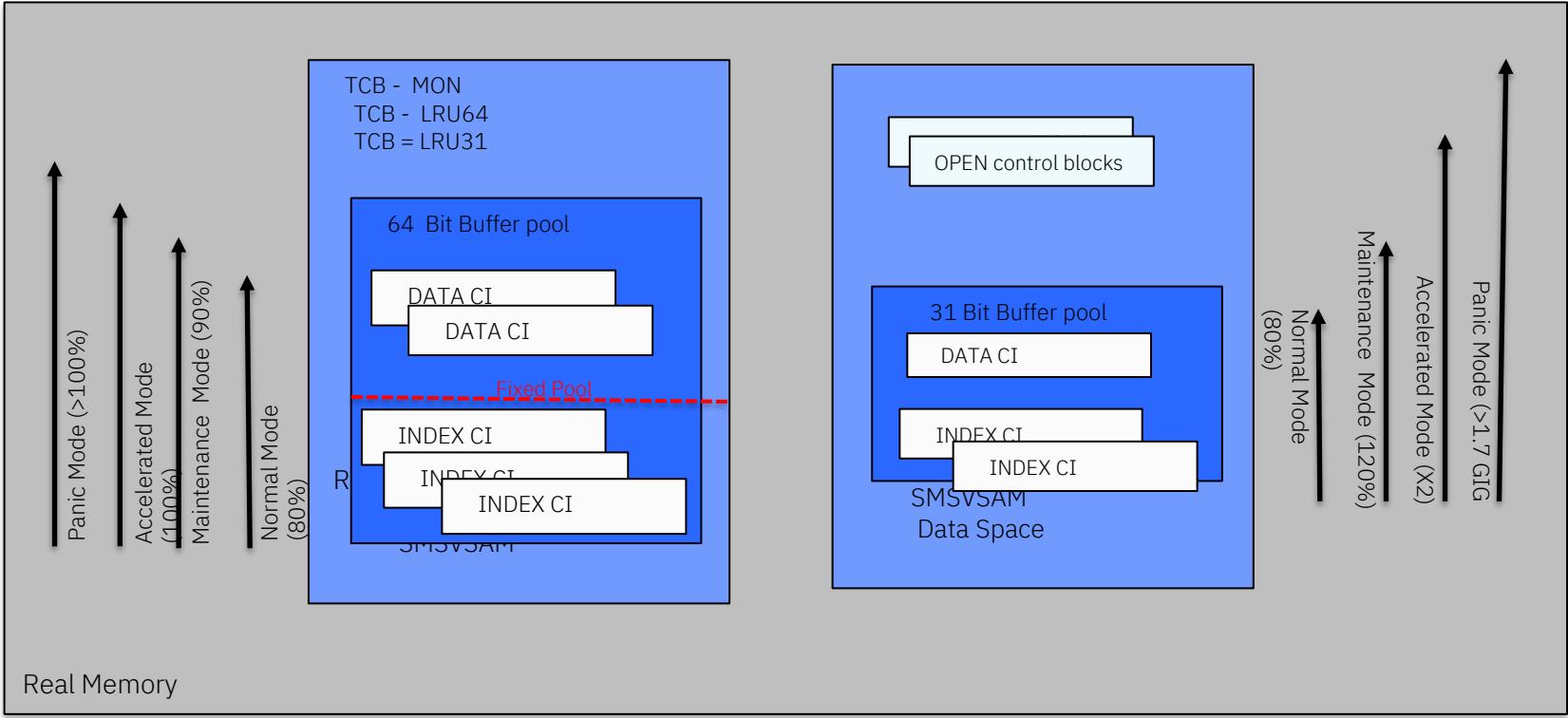
- ❑ RLS Introduction
- ❑ RLS SYSPLEX Example
- ❑ RLS Buffering
- ❑ RLS Caching
- ❑ RLS Physical I/O
- ❑ RLS Locking
- ❑ RLS Data Sets
- ❑ Monitoring
- ❑ SMF Reporting
- ❑ RLS SYSPLEX Example – Multiple Exploiters
- ❑ RLS Performance Enhancements
- ❑ Customer Benchmarks / Performance Data


# RLS Introduction

## VSAM RLS Introduction

- ❑ VSAM RLS provides full data sharing to your existing VSAM files (KSDS, ESDS,(V)RRDS), in a parallel SYSPLEX.
- ❑ Allows for high availability (HA) by allowing data sets to be shared cross LPARs/CECs via structures in the Coupling Facility (CF).
- ❑ Allows for high scalability by allowing many address spaces and LPARs to share the same files.
- ❑ Provides record level serialization, 64 bit buffering, and global caching for better performance.

## RLS SYSPLEX Example


# RLS SYSPLEX Example



# RLS Buffering

ols

System n



# RLS Buffering - LRU

## RLS 64 bit LRU - Modes

The LRU for the 64 bit buffer pool operates in four modes:

- **Normal Mode** - Total 64 bit pool size is less than 80% of RLSAboveTheBarMaxPoolSize.
- **Maintenance Mode** - Total 64 bit pool size is greater than 80% and less than 90% of RLSAboveTheBarMaxPoolSize.
- **Accelerated Mode** - Total 64 bit pool size is greater than 90% and less than 100% of RLSAboveTheBarMaxPoolSize.
- **Panic Mode** - Total 64 bit pool size is greater than 100% of RLSAboveTheBarMaxPoolSize

# RLS Buffering - LRU

## RLS 31 bit LRU - Modes

The LRU for the 31 bit buffer pool operates in four modes:

- **Normal Mode** - Total 31 bit pool size is less than 80% of RLS\_Max\_Pool\_Size.
- **Maintenance Mode** - Total 31 bit pool size is greater than 80% and less than 120% of RLS\_Max\_Pool\_Size.
- **Accelerated Mode** - Total 31 bit pool size is greater than 120% and less than 2\* of RLS\_Max\_Pool\_Size.
- **Panic Mode** - Total 31 bit pool size is greater than 2\* RLS\_Max\_Pool\_Size or >1.7 GIG.

## RLS Buffering – LRU (cont.)

The LRU will release buffers as follows:

- **Normal Mode** - Buffers stay indefinitely in normal mode.
- **Maintenance Mode** - Buffers 60 minutes or older will be released.
- **Accelerated Mode** - Buffers 30 minutes or older will be released. Requests for new buffers will first be stolen. If there are no buffers to steal a new get block will be done.
- **Panic Mode** - Buffers 5 minutes or older will be released. Requests for new buffers will first be stolen. If there are no buffers to steal, the request will sleep until LRU runs.

## RLS Buffering Parameters

SYS1.PARMLIB(IGDSMSxx):

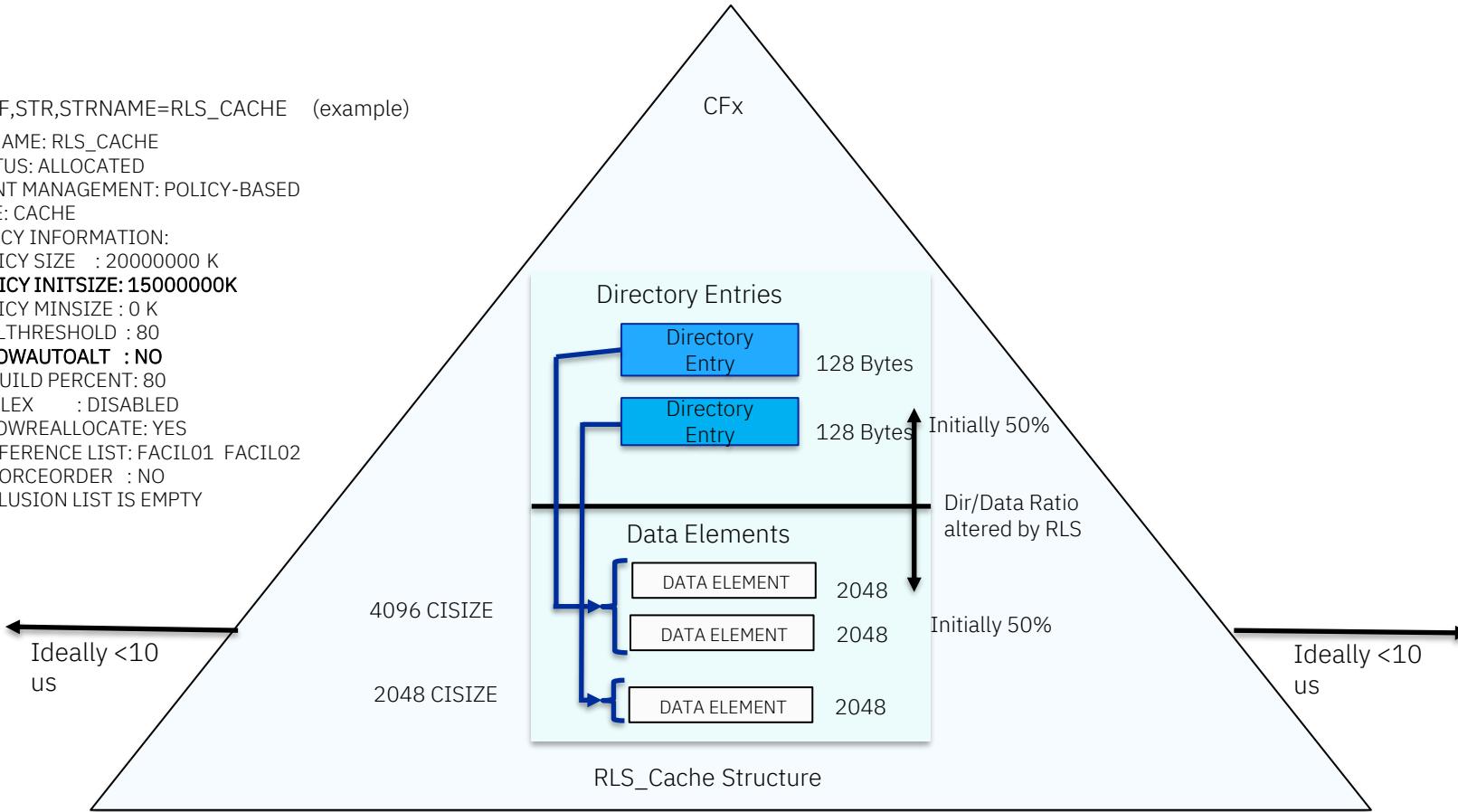
- **RLS\_MAX\_POOL\_SIZE**(100/nnnn) Where nnnn = (10 to 9999), anything over 1500 is treated as a maximum of 1728M.
- **RLSAboveTheBarMaxPoolSize**(sysname/ALL,0/nnnn) Where nnnn is either 0 (default), or 500M to 2,000,000M. Minimum value 500M.
- **RLSFixedPoolSize**(sysname/ALL,0/nnnn) Where nnnn is either 0 to 80% of real storage

- ❑ Only one RLS\_Max\_Pool\_Size for all lpars
- ❑ RLSAboveTheBarMaxPoolSize and RLSFixedPoolSize can have individual sizes for each LPAR.
- ❑ Best to not use the ALL parameter, it will override individual settings.
- ❑ **Caution:** Buffers are fixed on a first come first serve basis. For example, if the first data set opened and accessed has a 4K CISIZE, then the fixed buffers will be 4K in size for the life of this SMSVSAM instance.
- ❑ Fixed buffers can provide a significant performance improvement since the RSM pin/unpin calls are avoided.

## RLS Buffering Parameters (Cont.)

- ❑ Pool size values are a goal for which the RLS Least Recently Used (LRU) manager tries to maintain. If more buffers are required at any given time, the pool may temporarily exceed the values set.
- ❑ Total amount of buffer pools should not exceed amount of real storage. A paged out buffer is freed by the LRU.
- ❑ Data sets must set RLSAboveTheBar(YES) in the DATACLAS to use the above the bar pool. NO is the default.

### Sizing the Pools:


- ❑ For CICS or other LSR users, start with a pool size = sum of LSR pools per lpar.
- ❑ For catalog, start with VLF MAXVIRT \* 4096 per lpar or based on total catalog size.
- ❑ For exploiters with no existing buffering (ie HSM), consider starting with buffering the index CIs, and 20% of the data CIs (refer to High Used RBAs in the catalog).
- ❑ Buffering success is measured by BMF hit rate, average elapse and CPU time, and LRU mode.
- ❑ Internal IBM testing with 128 GIG above the bar pool.

# RLS CF Caching

# RLS Cache Structure

D XCF,STR,STRNAME=RLS\_CACHE (example)

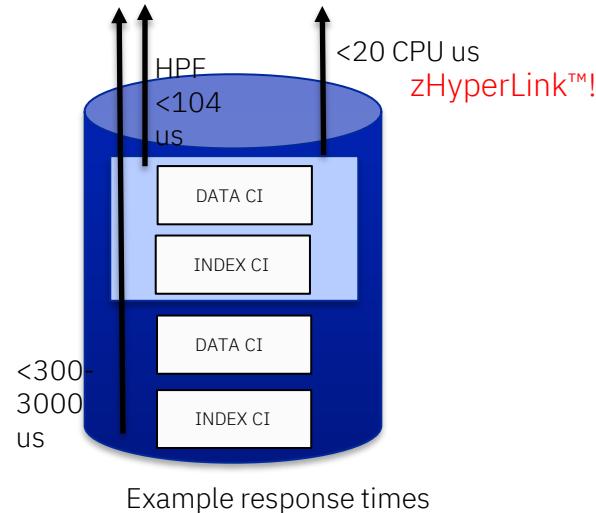
```
STRNAME: RLS_CACHE
STATUS: ALLOCATED
EVENT MANAGEMENT: POLICY-BASED
TYPE: CACHE
POLICY INFORMATION:
POLICY SIZE : 20000000 K
POLICY INITSIZE: 15000000K
POLICY MINSIZE : 0 K
FULLTHRESHOLD : 80
ALLOWAUTOALT : NO
REBUILD PERCENT: 80
DUPLEX : DISABLED
ALLOWREALLOCATE: YES
PREFERENCE LIST: FACILO1 FACILO2
ENFORCEORDER : NO
EXCLUSION LIST IS EMPTY
```



# RLS Caching

SYS1.PARMLIB(IGDSMSxx):

- **RLS\_MaxCFFeatureLevel(Z/A)** Where feature level A allows CISIZE >4K to be cached.
- RLS uses a store-thru-cache design, serialized by the CF CASTOUT lock.
- Each SMSVSAM registers interest with directory entries when reading a CI, then invalidates the entries on writing the (XI).
- Entries are reclaimed when a cache is “full”, and will invalidate the associated buffers.
- Data elements can be scaled back via DATACLAS **RLSCFCACHE(ALL/UPDATESONLY/NONE/DIRONLY)**
- RLS caches cannot be duplexed.
- RLS caches will automatically rebuild for CF issues. A new structure will be allocated empty.

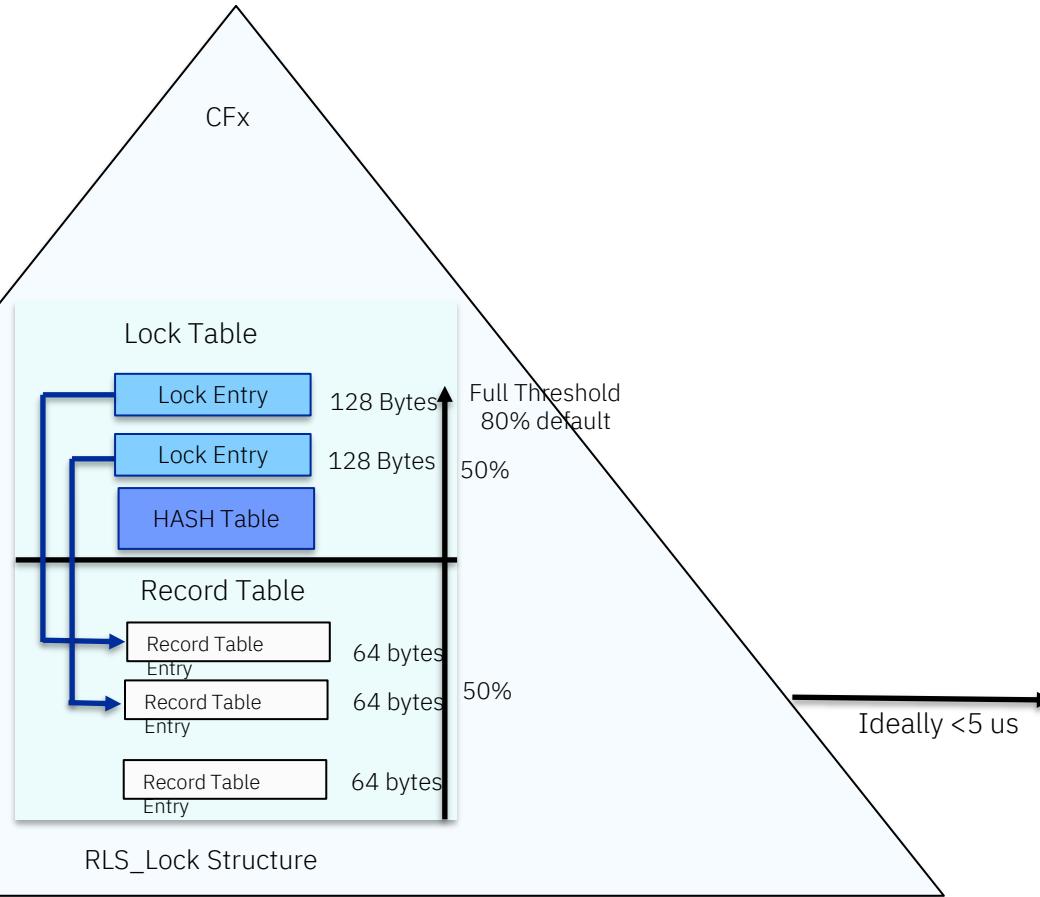

| CISIZE | Dir Entry | Data Elements |
|--------|-----------|---------------|
| 2K     | 1         | 1             |
| 4K     | 1         | 2             |
| 6K     | 1         | 3             |
| 8K     | 1         | 4             |
| 10K    | 1         | 5             |
| 12K    | 1         | 6             |
| 14K    | 1         | 7             |
| 16K    | 1         | 8             |
| 18K    | 1         | 9             |
| 20K    | 1         | 10            |
| 22K    | 1         | 11            |
| 24K    | 1         | 12            |
| 26K    | 1         | 13            |
| 28K    | 1         | 14            |
| 30K    | 1         | 15            |
| 32K    | 1         | 16            |

# RLS Cache Sizing

- The sum of all the RLS cache structures should equal the sum of all the RLS buffer pools across the sysplex.
- RLS BMF False Invalids and CF Reclaims for XI indicate the cache is too small relative to the size of the buffer pools.
- Splitting data sets with same performance requirements across multiple cache structures may lead to cache balancing problems.
- Different applications should have their own cache structures.

## RLS Physical I/O Considerations

- RLS always writes the Records (CIs) to disk.
- The CF castout lock serializes the write to the CF cache and to disk from each system. Readers wait for the castout lock.
- RLS supports compression, striping, and data set encryption.
- RLS supports the new zHyperlink technology for reads only.
- CI contention is measure by “REDOs” and CASTOUT lock contention/retries.




## RLS Locking Considerations

# RLS Lock Structure

D XCF,STR,STRNAME=IGWLOCK00 (example)  
STRNAME: IGWLOCK00  
STATUS: REASON SPECIFIED WITH REBUILD START:  
  POLICY-INITIATED  
  DUPLEXING REBUILD  
  METHOD: SYSTEM-MANAGED  
  AUTO VERSION: D4C07857 A1142913  
  PHASE: DUPLEX ESTABLISHED  
EVENT MANAGEMENT: POLICY-BASED  
TYPE: LOCK  
POLICY INFORMATION:  
  **POLICY SIZE : 1000000 K**  
  POLICY INITSIZE: N/A  
  POLICY MINSIZE : 0 K  
  **FULLTHRESHOLD : 50**  
  ALLOWAUTOALT : YES  
  REBUILD PERCENT: nn  
  DUPLEX : DISABLED  
  ALLOWREALLOCATE: YES  
  PREFERENCE LIST: CF1 CF2  
EXCLUSION LIST IS EMPTY

Ideally <5 us



# RLS Lock Structure Sizing

- ❑  $\text{Lock\_Structure\_Size} = 10\text{M} * \text{number\_of\_Systems\_in\_sysplex} * \text{Lock\_entry\_Size}$ 
  - ❑ Lock\_entry\_Size (depends on the CFRM MAXSYSTEM value):
    - MAXSYSTEM <= 7      Lock\_entry\_size = 2
    - MAXSYSTEM >= 8 & <24    Lock\_entry\_size = 4
    - MAXSYSTEM >=24 & <=32   Lock\_entry\_size = 8
- ❑ Example: MAXSYSTEM = 23 and 8 systems in sysplex
  - $\text{IGWLOCK00} = 10\text{M} * 8 * 4 = 320\text{M}$

# RLS Locking

- ❑ RLS has many types of locks:
  - Record level
  - Index level
  - Data set level
  - LPAR level
  - Sysplex level
- ❑ Two types of lock management:
  - Global – lock requests from different lpars.
  - Local - lock requests from same system.
- ❑ Two types of lock contention:
  - True - two or more requests want the same lock. Usually, can be managed by the user.
  - False - two or more requests want different locks but hash to the same lock entry. Indication of a too small lock structure.
- ❑ Assigned data sets to different lock structures for different applications.
- ❑ All locks have SMF42 fields providing statistics on contention.

# RLS Lock Rate Display

## □ D SMS,CFLS (Coupling Facility Lock Structure)

J80 12152 15:30:56.26 D SMS,CFLS

IGW320I 15:30:56 Display SMS,CFLS(IGWLOCK00 )

PRIMARY STRUCTURE:IGWLOCK00 VERSION:C99DC09480021972 SIZE:200704K

RECORD TABLE ENTRIES:434612 USED:984

SECONDARY STRUCTURE:IGWLOCK00 VERSION:C9A3EFBCF6FC3610

SIZE:200704K

RECORD TABLE ENTRIES:434612 USED:984

LOCK STRUCTURE MODE: DUPLEXED STATUS: ENABLE

| System | Interval | LockRate | ContRate | FContRate | WaitQLen |
|--------|----------|----------|----------|-----------|----------|
|--------|----------|----------|----------|-----------|----------|

|     |          |        |       |       |      |
|-----|----------|--------|-------|-------|------|
| J80 | 1 Minute | 1239.1 | 0.065 | 0.042 | 0.33 |
|-----|----------|--------|-------|-------|------|

|     |        |       |       |       |      |
|-----|--------|-------|-------|-------|------|
| J80 | 1 Hour | 373.9 | 0.099 | 0.038 | 0.04 |
|-----|--------|-------|-------|-------|------|

|     |        |       |       |       |       |
|-----|--------|-------|-------|-------|-------|
| J80 | 8 Hour | ----- | ----- | ----- | ----- |
|-----|--------|-------|-------|-------|-------|

|     |       |       |       |       |       |
|-----|-------|-------|-------|-------|-------|
| J80 | 1 Day | ----- | ----- | ----- | ----- |
|-----|-------|-------|-------|-------|-------|

|      |          |       |       |       |      |
|------|----------|-------|-------|-------|------|
| (13) | 1 Minute | 344.9 | 0.029 | 0.014 | 0.10 |
|------|----------|-------|-------|-------|------|

|      |        |       |       |       |      |
|------|--------|-------|-------|-------|------|
| (13) | 1 Hour | 108.4 | 0.041 | 0.015 | 0.03 |
|------|--------|-------|-------|-------|------|

Ideal contention levels are less 0.5%

## RLS Data Set Considerations

# Data Set Considerations

- ❑ All VSAM Record Type Data sets:
  - Maximum size with DATACLAS Extended Format (EF) and Extended Addressability (EA). Based on CI size, for example:
    - A CI size of 4 KB yields a maximum data set size of 16 TB
    - A CI size of 32 KB yields a maximum data set size of 128 TB
  - Maximum number of volumes per data set: 59
  - Maximum number of extents per volume 123.
  - Maximum number of extents with DATACLAS option Space Constraint Relief . . . Y :
    - $59 * 123 = 7257$
    - Reduce space option in DATACLAS Reduce Space Up To percentage to for extends
      - CISIZES which span tracks: 14K, 20K, 22K, 28K, 30K, AND 32K
  - May want to key range very large data sets to avoid performance and recovery issues.

# Data Set Considerations

## ❑ KSDSs

- Most scalable type of VSAM data set when using random inserts.
- Avoid adding to the end of a KSDS (ie ascending keys) when possible.
- Avoid a high volume of inserts into an empty data set. Add/delete dummy keys to prime free space.
- Consider larger CISIZEs for data sets with high inserts / erases to avoid CI/CA splits/reclaims.
- Consider smaller CISIZEs for high updates (no record length change) to avoid CI REDO's and CASTOUT lock contention.
- Consider compressing records (DATACLAS COMPRESSION=Y) especially for large RECORDSIZEs. May also reduce CI splits/reclaims by allowing for more records per CI.
- Use CA Reclaim to improve performance, reduce space, and avoid reorganizations for fragmentation (applies to data sets with ERASEs).
- Reduce the need to extend data sets by providing adequate primary space.
- CI split/reclaims can occur concurrently in different CAs. Serialized by Component\_1 Class 4 (Index) locks.
- CA split/reclaim are serial for the data set. Controlled by the Component\_1 Class1 (DIWA) lock.
- Reduce index levels when possible, through the use of CA Reclaim,

# Data Set Considerations

- ❑ ESDSs
  - Not a scalable data set for high inserts, since inserts must be at the end of the data set.
  - Consider sub-dividing poor performing ESDSs.
  - Inserts are serial and are controlled by the Component\_2 lock.
  
- ❑ Alternate Indexes
  - Prior to z/OS 2.3 inserts, erases, and updates with record length changes were serial and controlled by the Component\_2 (Upgrade) lock.
  - With z/OS 2.3 lower level serialization (record locks and REDOs) are used to allow concurrent writes.

# RLS Monitoring

# RLS Monitors

- ❑ RMF Monitor III
- ❑ IBM Tivoli Omegamon XE for Storage (see IBM website for more info)
- ❑ IBM Tivoli Omegamon XE for CICS (see IBM website for more info)

# RMF RLS Displays

## RMF III Sysplex Report Selection Menu

Selection ===>

Enter selection number or command for desired report.

### Sysplex Reports

1 **SYSSUM** Sysplex performance summary (SUM)

2 **SYSRTD** Response time distribution (RTD)

3 **SYSWKM** Work Manager delays (WKM)

4 **SYSENQ** Sysplex-wide Enqueue delays (ES)

7 **CFACT** Coupling Facility activity (CA)

10 **RLSSC** VSAM RLS activity by storage class (RLS)

11 **RLSDS** VSAM RLS activity by data set (RLD)

12 **RLSLRU** VSAM LRU overview (RLL)

# RMF CF Structure Detail Display

## RMF CF Structure Detail:

| COUPLING FACILITY USAGE SUMMARY |          |        |     |       |            |           |              |            |              |             |                    |                     |                    |                    |                    |
|---------------------------------|----------|--------|-----|-------|------------|-----------|--------------|------------|--------------|-------------|--------------------|---------------------|--------------------|--------------------|--------------------|
| STRUCTURE SUMMARY               |          |        |     |       |            |           |              |            |              |             |                    |                     |                    |                    |                    |
| STRUCTURE<br>TYPE               | NAME     | STATUS | CHG | ALLOC | CF<br>SIZE | #<br>STOR | % OF<br>REQ/ |            |              | AVG         |                    | LST/DIR             | DATA               | LOCK               | DIR REC/           |
|                                 |          |        |     |       |            |           | % OF<br>ALL  | % OF<br>CF | % OF<br>UTIL | REQ/<br>SEC | ENTRIES<br>TOT/CUR | ELEMENTS<br>TOT/CUR | ENTRIES<br>TOT/CUR | DIR REC<br>TOT/CUR | DIR REC<br>TOT/CUR |
| CACHE                           | RLSCACH1 | ACTIVE |     | 7G    | 19.8       | 299236    | 19.8         | n/a        | 332.48       | 2049K       | 3506K              | n/a                 | 40K                |                    |                    |
|                                 |          |        |     |       |            |           |              |            | 2049K        | 3171K       |                    |                     | 2K                 |                    |                    |
| CACHE                           | RLSCACH2 | ACTIVE |     | 7G    | 19.8       | 145452    | 8.2          | n/a        | 162.32       | 2049K       | 3506K              | n/a                 | 23K                |                    |                    |
|                                 |          |        |     |       |            |           |              |            | 2049K        | 3171K       |                    |                     | 0K                 |                    |                    |

Note: RMF CFDETAIL must be active: F RMF,MODIFY III,CFDETAIL

# RLS RMF Displays

## F RMF MONITOR III SYSPLEX RLS Activity by Storage Class (sysplex wide)

ERB3BUF RMF V1R8 VSAM RLS Activity - SYSPLEX Line 1 of 14  
Command ===> Scroll ===> CSR

LRU Status : Good  
Contention % : 0.0  
False Cont % : 0.0

| StorClas         | Access | Resp  | Read  |       |      | BMF  |       |        | Write |      |
|------------------|--------|-------|-------|-------|------|------|-------|--------|-------|------|
|                  |        |       | Time  | Rate  | BMF% | CF%  | DASD% | Valid% | False | Inv% |
| <b>STORCLAS1</b> |        |       |       |       |      |      |       |        |       |      |
| Below 2G         | DIR    | 0.000 | 0.00  | 0.0   | 0.0  | 0.00 | 0.0   | 0.00   | 0.00  | 0.00 |
|                  | SEQ    | 0.000 | 0.00  | 0.0   | 0.0  | 0.00 | 0.0   | 0.00   | 0.00  | 0.00 |
| Above 2G         | DIR    | 0.000 | 84299 | 100.0 | 0.0  | 0.00 | 100   | 0.00   | 0.00  | 0.00 |
|                  | SEQ    | 0.000 | 0.00  | 0.0   | 0.0  | 0.00 | 0.0   | 0.00   | 0.00  | 0.00 |

# RLS RMF Displays (cont.)

## F RMF MONITOR III SYSPLEX RLS Activity by Data Set (sysplex wide)

ERB3BUF RMF V1R8 VSAM RLS Activity - SYSPLEX Line 1 of 14  
Command ===> Scroll ===> CSR

LRU Status : Good  
Contention % : 0.0  
False Cont % : 0.0

Sphere/DS Access Resp -----Read----- BMF ----- Write  
Time Rate BMF% CF% DASD% Valid% False Inv% rate

### USERCAT1

|          |     |       |      |      |     |      |     |      |      |
|----------|-----|-------|------|------|-----|------|-----|------|------|
| Below 2G | DIR | 0.000 | 2438 | 100  | 0.0 | 0.0  | 100 | 0.00 | 0.00 |
|          | SEQ | 0.000 | 0.00 | 0.0  | 0.0 | 0.0  | 0.0 | 0.00 | 0.00 |
| Above 2G | DIR | 0.000 | 0.00 | 00.0 | 0.0 | 00.0 | 0.0 | 0.00 | 0.00 |
|          | SEQ | 0.000 | 0.00 | 0.0  | 0.0 | 0.0  | 0.0 | 0.00 | 0.00 |

### USERCAT1,INDEX

|          |     |       |      |      |     |      |     |      |      |
|----------|-----|-------|------|------|-----|------|-----|------|------|
| Below 2G | DIR | 0.00  | 7314 | 100  | 0.0 | 0.0  | 100 | 0.00 | 0.00 |
|          | SEQ | 0.000 | 0.00 | 0.0  | 0.0 | 0.0  | 0.0 | 0.00 | 0.00 |
| Above 2G | DIR | 0.000 | 0.00 | 00.0 | 0.0 | 00.0 | 0.0 | 0.00 | 0.00 |
|          | SEQ | 0.000 | 0.00 | 0.0  | 0.0 | 0.0  | 0.0 | 0.00 | 0.00 |

# RLS RMF Displays (cont.)

## RMF MONITOR III SYSPLEX VSAM LRU Overview

Samples: 59 Systems: 1 Date: 07/27/18 Time: 12.38.50 Range: 10

| MVS    | Avg CPU | - Buffer Size - | Accel | Reclaim | ----- | Read | ----- |       |
|--------|---------|-----------------|-------|---------|-------|------|-------|-------|
| System | Time    | Goal            | High  | %       | %     | BMF% | CF%   | DASD% |

### SYS1

|           |        |      |      |     |     |      |      |     |
|-----------|--------|------|------|-----|-----|------|------|-----|
| Below 2GB | 0.1147 | 850M | 952M | 100 | 0.0 | 85.0 | 10.0 | 5.0 |
| Above 2GB | 0.112  | 20G  | 17G  | 0.0 | 0.0 | 100  | 0.0  | 0.0 |

### SYS2

|           |        |      |      |      |     |      |     |     |
|-----------|--------|------|------|------|-----|------|-----|-----|
| Below 2GB | 0.1147 | 850M | 610M | 43.0 | 0.0 | 89.0 | 9.0 | 2.0 |
| Above 2GB | 0.112  | 20G  | 16G  | 0.0  | 0.0 | 100  | 0.0 | 0.0 |

# RLS SMF Reporting

# RLS SMF Reporting

- ❑ SMF 42 Subtypes 15, 16, 17, 18, 19
  - **Subtype 15** - RLS statistics by Storage Class
  - **Subtype 16** - RLS statistics by Data set
    - Must use V SMS,MONDS(spherename),ON to collect subtype 16 statistics.
    - Must turn on data set collection when using RMF III:
      - F III,VSAMRLS(ADD(DSNAME.\*\*))
  - **Subtype 17** - RLS locking statistics
  - **Subtype 18** - RLS caching statistics
  - **Subtype 19** - BMF statistics
- ❑ Note: Only one system in the sysplex collects the SMF 42 records. The system collecting the records is displayed in the D SMS,SMSVSAM operator command.

# RLS SMF Reporting

## Storage Class Response Time Summary above the bar (1 of 4)

|    | <u>Data Point</u> | <u>Description</u>                                                                                           | <u>R1</u>  | <u>R2</u>  | <u>R3</u>  |
|----|-------------------|--------------------------------------------------------------------------------------------------------------|------------|------------|------------|
| 1  | SMF2AFCB          | Total number of direct access requests                                                                       | 1,222,095K | 1,168,991K | 6,973,985K |
| 2  | SMF2AFEB          | Total number of sequential access requests                                                                   | 103,283K   | 105,129K   | 125,812K   |
| 3  | SMF2AFCE          | Total number of Write requests (direct access)                                                               | 169,545K   | 179,824K   | 558,406K   |
| 4  | SMF2AFEE          | Total number of Write requests (sequential access)                                                           | 155,880    | 158,052    | 170,564    |
| 5  | SMF2AFCC          | Total number of direct access Read requests - no read integrity                                              | 876,748K   | 843,359K   | 5,967,538K |
| 6  | SMF2AFCD          | Total number of direct access Read Requests - Consistent reads                                               | 985,412    | 1,058,640  | 806,420    |
| 7  | SMF2AFEC          | Total number of sequential access read requests - NRI protocol (No Read Integrity)                           | 47,798K    | 32,270K    | 60,857K    |
| 8  | SMF2AFED          | Total number of sequential access read requests - Consistent read protocol                                   | 73,883K    | 79,984K    | 65,638K    |
| 9  | SMF2AFEF          | Number of sequential access BMF requests                                                                     | 103,310K   | 105,150K   | 126,167K   |
| 10 | SMF2AFCX          | Average response time for all of the direct access requests in this interval (total time/number of requests) | 0.00       | 2.00       | 0.00       |

# RLS SMF Reporting

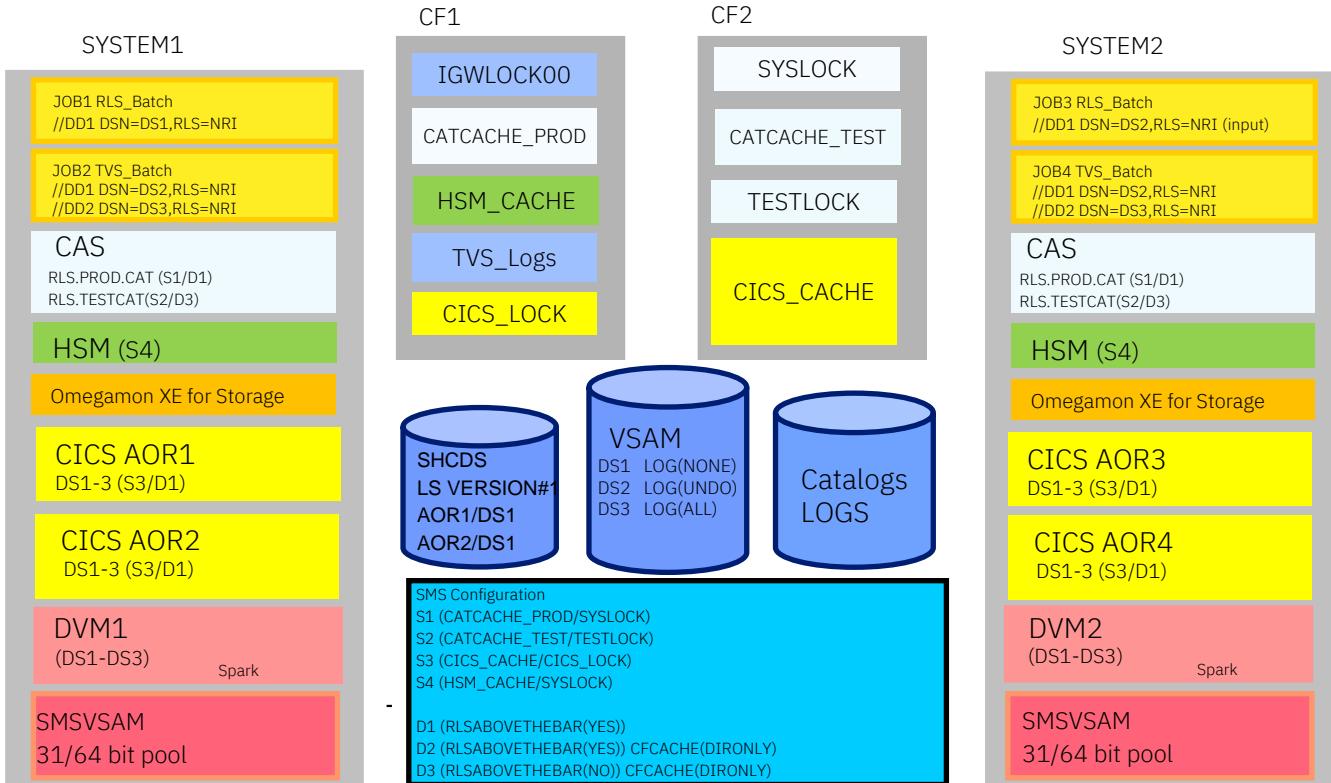
## Storage Class Response Time Summary above the bar (2 of 4)

|    | <u>Data Point</u> | <u>Description</u>                                                               | R1         | R2         | R3          |
|----|-------------------|----------------------------------------------------------------------------------|------------|------------|-------------|
| 11 | SMF2AFEX          | Average response time for all of the sequential access requests in this interval | 22.00      | 21.00      | 133.00      |
| 12 | SMF2AFCF          | Number of direct access BMF requests.                                            | 2,032,763K | 1,961,786K | 12,448,776K |
| 13 | SMF2AFCK          | Number of direct access BMF false invalids                                       | 1,530,828  | 1,411,136  | 2,274,008   |
| 14 | SMF2AFEK          | Number of sequential access BMF false invalids                                   | 2,528,140  | 1,836,668  | 632,412     |
| 15 | SMF2AFOA          | Number of record lock requests (obtain/alter/promote)                            | 311,500K   | 325,252K   | 451,567K    |
| 16 | SMF2AFOB          | Number of record lock requests that cause true contention                        | 24,168     | 21,768     | 70,596      |
| 17 | SMF2AFOC          | Number of record lock requests that cause false contention                       | 0          | 0          | 0           |
| 18 | SMF2AFOE          | Number of component_1 type lock requests                                         | 3,551,640  | 4,167,400  | 12,420,732  |
| 19 | SMF2AFOH          | Number of component_1 class_1 (DIWA) locks (obtain/alter/promote)                | 882,432    | 966,804    | 2,725,548   |
| 20 | SMF2AFOI          | Number of component_1 class_1 (DIWA) locks that cause true contention            | 3,832      | 4,996      | 23,964      |

# RLS SMF Reporting

## Storage Class Response Time Summary above the bar (3 of 4)

|    | <u>Data Point</u> | <u>Description</u>                                                             | <u>R1</u>  | <u>R2</u>  | <u>R3</u>  |
|----|-------------------|--------------------------------------------------------------------------------|------------|------------|------------|
| 21 | <b>SMF2AFOT</b>   | Number of component_2 lock requests (obtain/alter/promote)                     | 288        | 304        | 192        |
| 22 | <b>SMF2AFOU</b>   | Number of component_2 locks that cause true contention                         | 0          | 0          | 0          |
| 23 | <b>SMF2AFPHA</b>  | Number of component_1 class 4 (Index Record) locks (obtain/alter/promote)      | 2,844,884  | 3,328,424  | 9,695,184  |
| 24 | <b>SMF2AFPIA</b>  | Number of component_1 class 4 (Index Record) locks that cause true contention  | 244,100    | 316,316    | 885,108    |
| 25 | <b>SMF2AFPJA</b>  | Number of component_1 class 4 (Index Record) locks that cause false contention | 748        | 6,372      | 52         |
| 26 | <b>SMF2AFPKA</b>  | Number of component_1 class 4 (Index Record) release lock requests             | 2,412,848  | 2,201,064  | 8,944,280  |
| 27 | <b>SMF2AFEL</b>   | Number of requests processed by the sysplex cache manager                      | 14,283,116 | 14,738,768 | 39,528,412 |
| 28 | <b>SMF2AFEM</b>   | Number of CF read requests                                                     | 14,282,116 | 14,737,512 | 39,527,604 |
| 29 | <b>SMF2AFEN</b>   | Number of CF write requests                                                    | 91,056     | 88,488     | 112,892    |
| 30 | <b>SMF2AFEO</b>   | Number of CF read hits                                                         | 10,939,140 | 11,677,832 | 26,806,196 |


# RLS SMF Reporting

## Sysplex Totals Local Buffer Manager LRU Statistics Summary above the bar (1 of 3)

|    | <u>Data Point</u> | <u>Description</u>                                                           | R1         | R2         | R3          |
|----|-------------------|------------------------------------------------------------------------------|------------|------------|-------------|
| 1  | SMF2AJN7          | Total number of write requests (sysplex totals)                              | 85,421K    | 92,298K    | 277,871K    |
| 2  | SMF2AJNL          | Total number of times that BMF was called in this interval (across sysplex)  | 2,207,415K | 2,155,090K | 12,343,351K |
| 3  | SMF2AJNN          | Total number of Buffer Manager hits during this interval                     | 2,162,418K | 2,106,144K | 12,044,872K |
| 4  | SMF2AJNO          | Buffer Manager hits current percentage during this interval                  | 93.00      | 92.00      | 97.00       |
| 5  | SMF2AJNT          | Total Sysplex Cache manager number of hits during this interval              | 39,772K    | 61,380K    | 244,989K    |
| 6  | SMF2AJNU          | Sysplex Cache manager number of hits current percentage during this interval | 2.00       | 3.00       | 2.00        |
| 7  | SMF2AJTO          | High percentage of RE-DOs during this interval (across the sysplex)          | 96.00      | 115.00     | 94.00       |
| 8  | SMF2AJNZ          | Total DASD number of hits during this interval                               | 18,007K    | 18,011K    | 94,244K     |
| 9  | SMF2AJOA          | DASD hits current percentage during this interval                            | 5.00       | 6.00       | 6.00        |
| 10 | SMF2AJTB          | Total number of SCM read requests which encountered castout lock contention  | 197,912    | 297,612    | 289,172     |

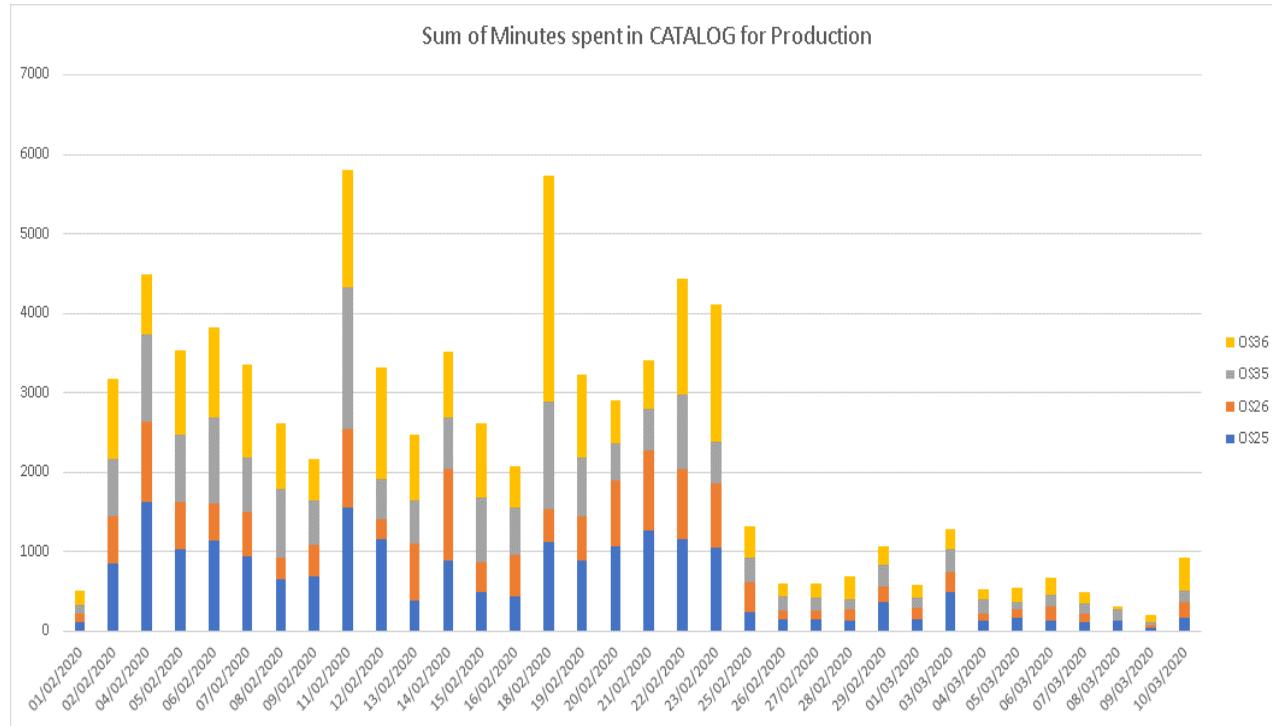
## RLS SYSPLEX – Multiple Exploiters

## Example RLS Configuration – Multiple Exploiters

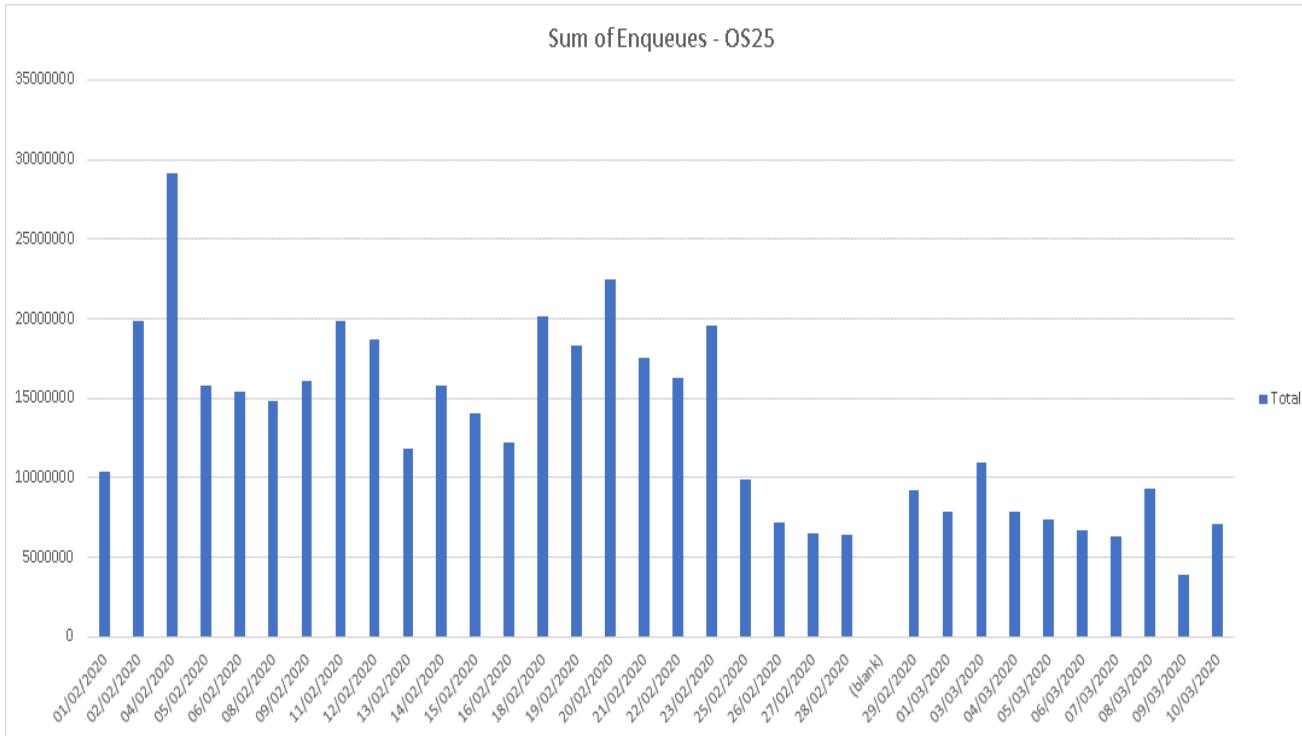


## RLS Performance Enhancements

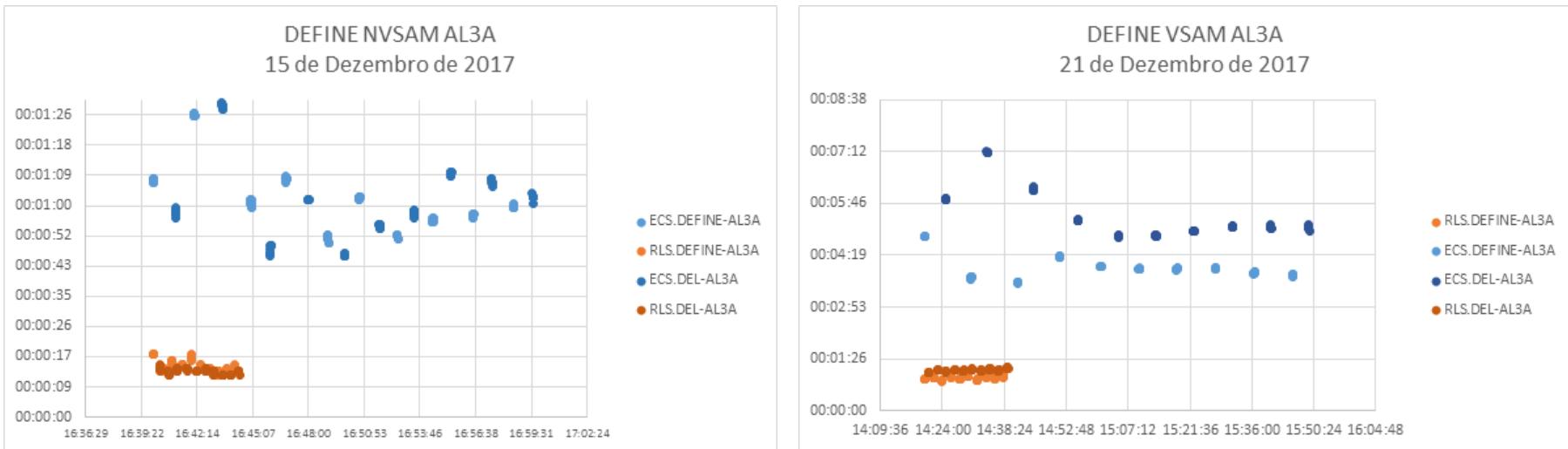
# RLS Performance Enhancements


- ❑ z/OS 1.12
  - CA Reclaim - Allows VSAM to recycle unused CA's avoiding the need to reorganize a KSDS to reclaim space and improve performance.
- ❑ z/OS 2.1
  - RLS Catalogs - Allow individual catalog to use RLS access. Eliminates the SYSIGGV2 ENQ, so catalog update requests can run concurrently. Provides 64 bit buffering and caching for catalog data.
  - zHyperlink ("syncio") – VSAM read requests will stay synchronous if data is in the dasd cache (OA52876 - open).
  - Buffer Manager Improvements: OA52392 and OA55099.
- ❑ z/OS 2.2
  - Index Record Locks - Allows CI splits and reclaims to execute in parallel in different CAs.
- ❑ z/OS 2.3
  - AIX Upgrade Lock Removal - Allows concurrent updates to VSAM spheres with AIXs defined.

## RLS Performance Enhancements (Cont.)


- ❑ OA60377 - POOR VSAM RLS PERFORMANCE DUE TO HOLDING LOCAL LOCKS TOO OFTEN.
  - Client benchmark showed 45% latency improvement
- ❑ OA61661 - POOR VSAM RLS PERFORMANCE DUE TO HOLDING LOCAL LOCKS TOO OFTEN.

# RLS Customer Benchmarks and Performance Data


# RLS Catalog Customer Benchmark



# RLS Catalog Customer Benchmark



# RLS Catalog Customer Benchmark



## RLS HSM/Catalog Customer Benchmark

| SYSPLEX    | Metric                                              | NonRLS           | RLS             | Delta |
|------------|-----------------------------------------------------|------------------|-----------------|-------|
| ALL PLEXES | Elapsed Time HSM Space Mgt                          | 19:48:18         | 17:22:05        | 12.3% |
| ALL PLEXES | Elapse Time HSM SMF202<br>(Backup/Recall/Migration) | 24663434273<br>2 | 9759291356<br>0 | 60.4% |
| ALL PLEXES | CATSTATX Ave CPU Time                               | 3166             | 869             | 72.5% |
| ALL PLEXES | CATSTATX Ave Elapse Time                            | 12.84            | 2.52            | 80.4% |

Questions ???